Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Jentschel, M (Ed.)The nuclear structure of the98Zr nucleus was studied through theβ−decay of98Yg.s.at the TRIUMF-ISAC facility. The use of the 8π γ-ray spectrometer with its ancillary detectors SCEPTAR and PACES enabled γ-γ and γ-e−coincidence measurements as well as γ-γ angular correlations. The level spin assignments and transition mixing ratios obtained in this study were in good agreement with previous results. Furthermore, 12 previously unknown states in the low-energy region of98Zr were identified, including the 0+5and 0+6levels at 2418 and 2749 keV, respectively. The 2+and I=1 natures for multiple newly observed and previously known (but not firmly assigned) states have been established. Additionally, the previously assumed pureE2 character of the 2+2→ 2+1367.8-keV transition was confirmed.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            We used the 138Baðd; αÞ reaction to carry out an in-depth study of states in 136Cs, up to around 2.5 MeV. In this Letter, we place emphasis on hitherto unobserved states below the first 1þ level, which are important in the context of solar neutrino and fermionic dark matter (FDM) detection in large-scale xenon-based experiments. We identify for the first time candidate metastable states in 136Cs, which would allow a realtime detection of solar neutrino and FDM events in xenon detectors, with high background suppression. Our results are also compared with shell-model calculations performed with three Hamiltonians that were previously used to evaluate the nuclear matrix element (NME) for 136Xe neutrinoless double beta decay.We find that one of these Hamiltonians, which also systematically underestimates the NME compared with the others, dramatically fails to describe the observed low-energy 136Cs spectrum, while the other two show reasonably good agreement.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
